Lower Bounds for the Mahler Measure of Polynomials on Subarcs

نویسنده

  • Tamás Erdélyi
چکیده

We give lower bounds for the Mahler measure of polynomials with constrained coefficients, including Littlewood polynomials, on subarcs of the unit circle of the complex plane. This is then applied to give an essentially sharp lower bound for the Mahler measure of the Fekete polynomials on subarcs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sieve-type Lower Bounds for the Mahler Measure of Polynomials on Subarcs

We prove sieve-type lower bounds for the Mahler measure of polynomials on subarcs of the unit circle of the complex plane. This is then applied to give an essentially sharp lower bound for the Mahler measure of the Fekete polynomials on subarcs.

متن کامل

The Mahler Measure of the Rudin-shapiro Polynomials

Littlewood polynomials are polynomials with each of their coefficients in {−1, 1}. A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit circle of the complex plane is given by the Rudin-Shapiro polynomials. It is shown in this paper that the Mahler measure and the maximum modulus of the Rudin-Shapiro polynomials on the unit circle of the complex plane h...

متن کامل

UPPER BOUNDS FOR THE Lq NORM OF FEKETE POLYNOMIALS ON SUBARCS

where the coefficients are Legendre symbols, is called the p-th Fekete polynomial. In this paper the size of the Fekete polynomials on subarcs is studied. We prove essentially sharp bounds for the average value of |fp(z)| , 0 < q < ∞, on subarcs of the unit circle even in the cases when the subarc is rather small. Our upper bounds are matching with the lower bounds proved in a preceding paper f...

متن کامل

Comparison of measures of totally positive polynomials

In this note, explicit auxiliary functions are used to get upper and lower bounds for the Mahler measure of monic irreducible totally positive polynomials with integer coefficients. These bounds involve the length and the trace of the polynomial.

متن کامل

Integer transfinite diameter and polynomials with small Mahler measure

In this work, we show how suitable generalizations of the integer transfinite diameter of some compact sets in C give very good bounds for coefficients of polynomials with small Mahler measure. By this way, we give the list of all monic irreducible primitive polynomials of Z[X] of degree at most 36 with Mahler measure less than 1. 324... and of degree 38 and 40 with Mahler measure less than 1. 31.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010